Интегрированное управление движением самолета

Транспорт сегодня » Связанные системы управления самолетом » Интегрированное управление движением самолета

Страница 1

Управление пространственным движением самолета по заданной траектории с требуемым законом изменения скорости производится путем соответствующего регулирования углов тангажа, крена и тяги двигателей. Так как каждой точке заданной фазовой траектории соответствует определенное энергетическое состояние самолета, а источником его энергии является двигатель, то в итоге оптимальное управление траекторным движением сводится к такому взаимодействию каналов регулирования тангажа и тяги, при котором темп изменения энергии самолета соответствует требуемому. Такой взгляд на процесс траекторного управления позволяет сформулировать принцип полной энергии, на основе которого строятся современные системы траекторного управления, объединяющие все упомянутые каналы регулирования в интегрированный комплекс.

Уравнения продольного движения в форме Лапласа запишутся в виде:

(s+0.760979)ωz + (0.201116s+3.16401)α + 0.003064V + 2.61238δв + 0.0001428P=0;

- ωz + (s+0.828486)α + 0.0488844V + 0.0748768δв =0;

-0.164736α + (s+ 0.0117534 )V + 0.17101υ – 0.0001225P = 0;

2.81364(α – υ) + sΔH = 0;

- ωz +sΔυ = 0.

Улучшим характеристики процессов, подобрав другие коэффициенты в обратных связях.

В переходном процессе по скорости V можно заметить, что перерегулирование уменьшилось до 4 %:

Посмотрим теперь на переходные процессы по скорости и изменению высоты при различных входных сигналах.

1) Когда на руль высоты поступает сигнал –100, а отклонение элеронов 0:

2) Когда на руль высоты поступает сигнал 0, а отклонение элеронов равно 10:

3) Когда на руль высоты поступает сигнал -100, а отклонение элеронов равно 10, при этом действует возмущающий момент, равный 10:

4) Когда на руль высоты поступает сигнал -100, а отклонение элеронов равно 10, при этом дует ветер под углом 5°:

Проектирование продольного движения с перекрестными связями:

Отсюда находим передаточные функции:

Тогда получим:

Передаточная функция = 175.4987s2(s+7.165)(s+5.573)(s-4.621)(s+0.1138)(s2+0.386s+0.1192)

s(s+7.165)(s+0.5253)(s+0.1117)(s2+0.3455s+0.07861)(s2+ 0.3882s+0.2644)(s2+2.209s+2.816)(s2+32.03s+780.1)

Переходный процесс:

Передаточная функция =

6.072(s+7.165)(s+0.1801)(s+0.0265)(s+2.165e-008)(s-2.165e-008)(s2+0.2931s+0.09083)(s2+3.23s+5.517)(s2+31.88s+775.4)

s(s+7.165)(s+0.5253)(s+0.1117)(s2+0.3455s+0.07861)(s2+0.3882s+0.2644)(s2+2.209s+2.816)(s2+32.03s+780.1)

Переходный процесс:

Передаточная функция = 0.0072s(s+7.165)(s+0.1801)(s+0.0265)(s+3.134e-007)(s-3.134e-007)(s2+0.2931s+0.09083)(s2+3.23s+5.517)(s2+31.88s+775.4)

s(s+7.165)(s+0.5253)(s+0.1117)(s2+0.3455s+0.07861)(s2+0.3882s+0.2644)(s2+2.209s+2.816)(s2+32.03s+780.1)

Переходный процесс:

Страницы: 1 2

Информация по теме:

Удаление азотированного упрочненного слоя коленчатого вала КАМАЗ электрохимическим методом
Способ 1. Известен способ электроэрозионного шлифования тел вращения (Размерная электрическая обработка металлов: Учебн. пособие для студентов вузов /Б.А. Артамонов, А. Л. Вишницкий, Ю.С. Волков, А.В. Глазков./ Под ред. А.В. Глазкова. - М.: Высшая школа, 1978. - 336 с.), при котором электроду-загот ...

Выбор аналога для сравнения
Ближайшим аналогом данной системы является разработка фирмы Yamaha - EXUP(ExhaustUltimatePowerValve). Цель у обеих систем одна, обеспечить наиболее эффективную работу силовой установки ДВС, ГДН при различных режимах работы ДВС, но способы ее достижения у них совершенно разные. EXUP работает по прин ...

Кузовное и малярное отделение
Кузовной цех Текущие тенденции показывают увеличение потребности в кузовном ремонте и покраске. Для этих видов ремонта характерна высокая прибыльность и неритмичность заказов. Но преимущества перевешивают недостатки. Наиболее важным в этих видах работ является квалификация персонала - кузовных маст ...

Разделы

Copyright © 2025 - All Rights Reserved - www.transpotrend.ru