Интегрированное управление движением самолета

Транспорт сегодня » Связанные системы управления самолетом » Интегрированное управление движением самолета

Страница 1

Управление пространственным движением самолета по заданной траектории с требуемым законом изменения скорости производится путем соответствующего регулирования углов тангажа, крена и тяги двигателей. Так как каждой точке заданной фазовой траектории соответствует определенное энергетическое состояние самолета, а источником его энергии является двигатель, то в итоге оптимальное управление траекторным движением сводится к такому взаимодействию каналов регулирования тангажа и тяги, при котором темп изменения энергии самолета соответствует требуемому. Такой взгляд на процесс траекторного управления позволяет сформулировать принцип полной энергии, на основе которого строятся современные системы траекторного управления, объединяющие все упомянутые каналы регулирования в интегрированный комплекс.

Уравнения продольного движения в форме Лапласа запишутся в виде:

(s+0.760979)ωz + (0.201116s+3.16401)α + 0.003064V + 2.61238δв + 0.0001428P=0;

- ωz + (s+0.828486)α + 0.0488844V + 0.0748768δв =0;

-0.164736α + (s+ 0.0117534 )V + 0.17101υ – 0.0001225P = 0;

2.81364(α – υ) + sΔH = 0;

- ωz +sΔυ = 0.

Улучшим характеристики процессов, подобрав другие коэффициенты в обратных связях.

В переходном процессе по скорости V можно заметить, что перерегулирование уменьшилось до 4 %:

Посмотрим теперь на переходные процессы по скорости и изменению высоты при различных входных сигналах.

1) Когда на руль высоты поступает сигнал –100, а отклонение элеронов 0:

2) Когда на руль высоты поступает сигнал 0, а отклонение элеронов равно 10:

3) Когда на руль высоты поступает сигнал -100, а отклонение элеронов равно 10, при этом действует возмущающий момент, равный 10:

4) Когда на руль высоты поступает сигнал -100, а отклонение элеронов равно 10, при этом дует ветер под углом 5°:

Проектирование продольного движения с перекрестными связями:

Отсюда находим передаточные функции:

Тогда получим:

Передаточная функция = 175.4987s2(s+7.165)(s+5.573)(s-4.621)(s+0.1138)(s2+0.386s+0.1192)

s(s+7.165)(s+0.5253)(s+0.1117)(s2+0.3455s+0.07861)(s2+ 0.3882s+0.2644)(s2+2.209s+2.816)(s2+32.03s+780.1)

Переходный процесс:

Передаточная функция =

6.072(s+7.165)(s+0.1801)(s+0.0265)(s+2.165e-008)(s-2.165e-008)(s2+0.2931s+0.09083)(s2+3.23s+5.517)(s2+31.88s+775.4)

s(s+7.165)(s+0.5253)(s+0.1117)(s2+0.3455s+0.07861)(s2+0.3882s+0.2644)(s2+2.209s+2.816)(s2+32.03s+780.1)

Переходный процесс:

Передаточная функция = 0.0072s(s+7.165)(s+0.1801)(s+0.0265)(s+3.134e-007)(s-3.134e-007)(s2+0.2931s+0.09083)(s2+3.23s+5.517)(s2+31.88s+775.4)

s(s+7.165)(s+0.5253)(s+0.1117)(s2+0.3455s+0.07861)(s2+0.3882s+0.2644)(s2+2.209s+2.816)(s2+32.03s+780.1)

Переходный процесс:

Страницы: 1 2

Информация по теме:

Интегрированное управление движением самолета
Управление пространственным движением самолета по заданной траектории с требуемым законом изменения скорости производится путем соответствующего регулирования углов тангажа, крена и тяги двигателей. Так как каждой точке заданной фазовой траектории соответствует определенное энергетическое состояние ...

Выбор и расчет количества технологического оборудования, подъемно-транспортного оборудования и организационной оснастки
Количество сборочных стендов Хо, шт.: Хо =Тi/Фдо, где Тi – годовой объем конкретной работы, н.-ч; Фдо – действительный годовой фонд времени оборудования, ч; Хо =3744/3918,8=0,955 (шт), принимаем: Хо = 1 шт. Таблица 4 – Ведомость технологического оборудования Позиция Наименование оборудования Габари ...

Охрана труда и природы при производстве погрузочно-разгрузочных работ и складских операций
Поскольку погрузочно-разгрузочные работы относят к наиболее тяжелым и трудоемким операциям на транспорте, важное значение, имеет способ их выполнения. Существует несколько способов выполнения погрузочно-разгрузочных работ: вручную, механизированный, комплексно-механизированный и автоматизированный. ...

Разделы

Copyright © 2024 - All Rights Reserved - www.transpotrend.ru