Управление пространственным движением самолета по заданной траектории с требуемым законом изменения скорости производится путем соответствующего регулирования углов тангажа, крена и тяги двигателей. Так как каждой точке заданной фазовой траектории соответствует определенное энергетическое состояние самолета, а источником его энергии является двигатель, то в итоге оптимальное управление траекторным движением сводится к такому взаимодействию каналов регулирования тангажа и тяги, при котором темп изменения энергии самолета соответствует требуемому. Такой взгляд на процесс траекторного управления позволяет сформулировать принцип полной энергии, на основе которого строятся современные системы траекторного управления, объединяющие все упомянутые каналы регулирования в интегрированный комплекс.
Уравнения продольного движения в форме Лапласа запишутся в виде:
(s+0.760979)ωz + (0.201116s+3.16401)α + 0.003064V + 2.61238δв + 0.0001428P=0;
- ωz + (s+0.828486)α + 0.0488844V + 0.0748768δв =0;
-0.164736α + (s+ 0.0117534 )V + 0.17101υ – 0.0001225P = 0;
2.81364(α – υ) + sΔH = 0;
- ωz +sΔυ = 0.
Улучшим характеристики процессов, подобрав другие коэффициенты в обратных связях.
В переходном процессе по скорости V можно заметить, что перерегулирование уменьшилось до 4 %:
Посмотрим теперь на переходные процессы по скорости и изменению высоты при различных входных сигналах.
1) Когда на руль высоты поступает сигнал –100, а отклонение элеронов 0:
2) Когда на руль высоты поступает сигнал 0, а отклонение элеронов равно 10:
3) Когда на руль высоты поступает сигнал -100, а отклонение элеронов равно 10, при этом действует возмущающий момент, равный 10:
4) Когда на руль высоты поступает сигнал -100, а отклонение элеронов равно 10, при этом дует ветер под углом 5°:
Проектирование продольного движения с перекрестными связями:
Отсюда находим передаточные функции:
Тогда получим:
Передаточная функция
= 175.4987s2(s+7.165)(s+5.573)(s-4.621)(s+0.1138)(s2+0.386s+0.1192)
s(s+7.165)(s+0.5253)(s+0.1117)(s2+0.3455s+0.07861)(s2+ 0.3882s+0.2644)(s2+2.209s+2.816)(s2+32.03s+780.1)
Переходный процесс:
Передаточная функция
=
6.072(s+7.165)(s+0.1801)(s+0.0265)(s+2.165e-008)(s-2.165e-008)(s2+0.2931s+0.09083)(s2+3.23s+5.517)(s2+31.88s+775.4)
s(s+7.165)(s+0.5253)(s+0.1117)(s2+0.3455s+0.07861)(s2+0.3882s+0.2644)(s2+2.209s+2.816)(s2+32.03s+780.1)
Переходный процесс:
Передаточная функция
= 0.0072s(s+7.165)(s+0.1801)(s+0.0265)(s+3.134e-007)(s-3.134e-007)(s2+0.2931s+0.09083)(s2+3.23s+5.517)(s2+31.88s+775.4)
s(s+7.165)(s+0.5253)(s+0.1117)(s2+0.3455s+0.07861)(s2+0.3882s+0.2644)(s2+2.209s+2.816)(s2+32.03s+780.1)
Переходный процесс:
Информация по теме:
Расчет технико – эксплуатационных показателей работы подвижного состава на
маршрутах
На каждом маршруте рассчитываем следующие технико-эксплуатационные показатели работы подвижного состава: 1. Время оборота автотранспортного средства на маршруте: tоб = (Lм /Vт) + ∑ tпр+ n*tзаезда 1) tоб = (35,5/ 24) + 0,22 + 3* 0,15 = 2,04 ч. 2) tоб = (47 / 24) + 0,22 + 3* 0,15 = 2,52 ч. 3) t ...
Послеремонтные испытания
После вулканизации необходимо проконтролировать качество отремонтированной поверхности. Поверхность резины в месте ремонта должна быть плотной, без воздушных пор. Наличие воздушных пор говорит о недостаточном давлении в процессе вулканизации. Отшлифовать внешнюю сторону места ремонта до уровня осно ...
Расчет провозоспособности и
потребного числа судов
Провозная способность судов и количество их, потребное для освоения перевозок, определяется при помощи расчета следующих показателей: Общее время рейса судна на линии: tр = tх + tст, сут. (33) Ходовое время рейса определяется следующим образом: , сут. (34) tр= (2461/14/24) + 34,7=42 сут Стояночное ...