Управление пространственным движением самолета по заданной траектории с требуемым законом изменения скорости производится путем соответствующего регулирования углов тангажа, крена и тяги двигателей. Так как каждой точке заданной фазовой траектории соответствует определенное энергетическое состояние самолета, а источником его энергии является двигатель, то в итоге оптимальное управление траекторным движением сводится к такому взаимодействию каналов регулирования тангажа и тяги, при котором темп изменения энергии самолета соответствует требуемому. Такой взгляд на процесс траекторного управления позволяет сформулировать принцип полной энергии, на основе которого строятся современные системы траекторного управления, объединяющие все упомянутые каналы регулирования в интегрированный комплекс.
Уравнения продольного движения в форме Лапласа запишутся в виде:
(s+0.760979)ωz + (0.201116s+3.16401)α + 0.003064V + 2.61238δв + 0.0001428P=0;
- ωz + (s+0.828486)α + 0.0488844V + 0.0748768δв =0;
-0.164736α + (s+ 0.0117534 )V + 0.17101υ – 0.0001225P = 0;
2.81364(α – υ) + sΔH = 0;
- ωz +sΔυ = 0.
Улучшим характеристики процессов, подобрав другие коэффициенты в обратных связях.
В переходном процессе по скорости V можно заметить, что перерегулирование уменьшилось до 4 %:
Посмотрим теперь на переходные процессы по скорости и изменению высоты при различных входных сигналах.
1) Когда на руль высоты поступает сигнал –100, а отклонение элеронов 0:
2) Когда на руль высоты поступает сигнал 0, а отклонение элеронов равно 10:
3) Когда на руль высоты поступает сигнал -100, а отклонение элеронов равно 10, при этом действует возмущающий момент, равный 10:
4) Когда на руль высоты поступает сигнал -100, а отклонение элеронов равно 10, при этом дует ветер под углом 5°:
Проектирование продольного движения с перекрестными связями:
Отсюда находим передаточные функции:
Тогда получим:
Передаточная функция
= 175.4987s2(s+7.165)(s+5.573)(s-4.621)(s+0.1138)(s2+0.386s+0.1192)
s(s+7.165)(s+0.5253)(s+0.1117)(s2+0.3455s+0.07861)(s2+ 0.3882s+0.2644)(s2+2.209s+2.816)(s2+32.03s+780.1)
Переходный процесс:
Передаточная функция
=
6.072(s+7.165)(s+0.1801)(s+0.0265)(s+2.165e-008)(s-2.165e-008)(s2+0.2931s+0.09083)(s2+3.23s+5.517)(s2+31.88s+775.4)
s(s+7.165)(s+0.5253)(s+0.1117)(s2+0.3455s+0.07861)(s2+0.3882s+0.2644)(s2+2.209s+2.816)(s2+32.03s+780.1)
Переходный процесс:
Передаточная функция
= 0.0072s(s+7.165)(s+0.1801)(s+0.0265)(s+3.134e-007)(s-3.134e-007)(s2+0.2931s+0.09083)(s2+3.23s+5.517)(s2+31.88s+775.4)
s(s+7.165)(s+0.5253)(s+0.1117)(s2+0.3455s+0.07861)(s2+0.3882s+0.2644)(s2+2.209s+2.816)(s2+32.03s+780.1)
Переходный процесс:
Информация по теме:
Знаки приоритета
Единственная группа знаков, имеющих разную форму и окраску. Знаки приоритета устанавливают очередность проезда транспортных средств на перекрестках, пересечениях проезжих частей, узких участков дороги. Знак 2.1 "Главная дорога", установленный в начале дороги дает преимущественное право пр ...
Простой вагона на станции с местным грузом
Простой вагона на станции под операциями прибытия t = , (30) где - вагоно-часы простоя вагона с местным грузом от прибытия до начала грузовых операций - число вагонов с местным грузом, прибывших на станцию t = , Простой вагона на станции под грузовыми операциями t = , (31) где - вагоно-часы простоя ...
Расчет нагрузки каналов сети прямых соединений
Расчет нагрузки каналов и необходимого оборудования телеграфной станции при любой системе телеграфирования производится для часа наибольшего значения потоков телеграфных сообщений. При системе ПС, в случае занятости каналов внутридорожной сети, транзитные телеграммы направляются на автоматизированн ...