Уравновешивание двигателя

Силы инерции вращательно движущихся масс в однорядной звезде как и в одноцилиндровом двигателе, неуравновешенны и уравновешиваются противовесами:

двигатель давление газ нагнетатель

,

где - центробежная сила вращающихся частей равна:

- сила инерции от неуравновешенных частей равна:

(масса неуравновешенных частей вычислена при динамическом расчете на ЭВМ, см. табл. 2.2)

.

Рассмотрим вопрос уравновешивания сил инерции поступательно движущихся масс.

Если исходить из положения, что все шатуны в двигателе центральные, то силы и всех цилиндров соответственно равны. В этом случае результирующая сила инерции первого порядка будет представлять собой постоянный по величине вектор, приложенный к шатунной шейке коленчатого вала и вращающийся вместе с коленом. Он равен

,

где - поступательно движущаяся масса, относящаяся к одному цилиндру, =1,2кг;

Z – число цилиндров в одной звезде.

.

Такую силу легко уравновесить, добавив к противовесам соответствующую массу.

Определим вес противовесов для уравновешивания сил инерции вращательно-движущихся масс и сил инерции первого порядка поступательно движущихся масс:

В расчете веса противовесов предполагалось что оба противовеса одного веса но в реальности существует различие связанное с разьемной конструкцией коленчатого вала. Положение центра тяжести противовеса определено с помощью программы КОМПАС–V13. После установки противовесов неуравновешенность двигателя в основном будет определяться силой инерции поступательно движущихся масс второго порядка. Эта сила через мотораму передается на корпус ЛА вызывая его вибрацию. Для ее уменьшения применены амортизирующие подвески.

В действительности же вследствие разницы в массах шатунов и в кинематике поршней главного и боковых цилиндров результирующий вектор сил инерции первого порядка не постоянный по величине, а содержит переменную составляющую; конец вектора описывает эллипс (рисунок 3.8), большая ось которого совпадает с направлением оси главного цилиндра. Амплитуда переменной составляющей

,

где - - разность поступательно движущихся масс главного и бокового цилиндра:

.

Тогда в момент равна:

.

Рисунок 3.1 – Результирующий вектор сил инерции первого порядка

Прочностные расчеты

Расчет твердотельных моделей деталей, выполненных в пакете Solid Works, производится в пакете Cosmos Works.

В основу расчета заложен метод конечных элементов (МКЭ). Перед расчетом задаем материал деталей, условия закрепления по плоскостям и цилиндрическим поверхностям и производим разбиение твердотельной модели на сетку конечных элементов. Далее производим расчет на статическую прочность для поршня и пальца и расчет на устойчивость для шатуна.

Информация по теме:

Расчет маршрутов перевозок
При организации перевозок мелкопартионных грузов от одного отправителя к нескольким получателям возникает необходимость определения рациональной последовательности объезда пунктов, которая позволит сократить пробег автомобиля и время доставки грузов. Количество вариантов маршрутов при объезде пункт ...

Виды и типы тарифов
Тариф — это утвержденная в установленном порядке сумма, взимаемая авиаперевозчиком за перевозку пассажира в соответствии с применяемым классом обслуживания, от пункта отправления do пункта назначения по определенному маршруту. В международной практике воздушных перевозок существуют отдельные группы ...

Датчик положения ГДН
Такие датчики широко используются в системах, где возможно преобразование контролируемой величины в изменение магнитного поля, которое впоследствии легко проконтролировать датчиком Холла.К числу таких величин относятся переменный/постоянный ток или напряжение, давление, температура, скорость, вибра ...

Разделы

Copyright © 2024 - All Rights Reserved - www.transpotrend.ru